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Abstract. The various proton orderings occurring in M3H(XO4)2 crystals are investigated in
the framework of a lattice-gas-type model with account taken of the interactions of the proton
subsystem with the orientations of the XO4 ionic groups. In particular, it is shown that the
orientational ordering of SeO4 ions is strongly involved in the I–II–III–IV phase transitions
which take place in(NH4)3H(SeO4)2 and appears to be the basic mechanism determining the
observed phase sequence. The phase diagram obtained together with the microscopic parameter
values calculated for(NH4)3H(SeO4)2 agree with the experimental data for the phase orderings.

1. Introduction

The M3H(XO4)2 (M = K, Rb, Cs, NH4; X = Se, S) family of crystals has attracted much
attention—at first in view of their ferroelectric properties, and lately owing to the discovery
of the high-temperature super-ionic phases with protonic conductivity. In these compounds,
with layered structure, the XO4 tetrahedra together with protons form the conducting planes
of the virtual hydrogen bonds. The conduction mechanism is complicated due to the
interplay of the vertex oxygens O(2) of the disordered XO4 groups and protons on the
hydrogen bridges, and consists in the dynamical formation and breaking of the hydrogen
bonds between the O(2) oxygens with a one-third probability of each hydrogen bond existing.

It is worthy of note that the super-ionic phase transitions in these crystals are of
ferroelastic nature also. The ordered sequences of the dimers consisting of XO4 tetrahedra
connected by the hydrogen bonds O(2)′–H–O(2)′′ arise in the low-temperature ferroelastic
phases of monoclinic or even triclinic symmetry. The crystals which belong to this family
are isomorphic and that is the reason for the similarity of the phase sequences occurring
in them. In most cases the super-ionic phase of trigonal symmetryR3̄m transforms on
cooling into the ferroelastic phase of monoclinic symmetryC2/c (or A2/a) with the further
ferroelectric ordering that is observed in Rb3H(SeO4)2 and Cs3H(SeO4)2 crystals for example
[1–4]. According to recent structural studies [5–7] a more complicated phase sequence
occurs in (NH4)3H(SeO4)2 (TAHSe) crystal: phase I (trigonalR3̄m), phase II (trigonalR3̄),
phase III (triclinicC1̄), phase IV (monoclinicC2/c), phase V (monoclinicCc), phase VI
(monoclinicCc) with the transition temperatures 332 K, 302 K, 275 K, 181 K and 101 K
respectively.
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The proton subsystem and the rearrangement of the hydrogen-bond network, in
particular, play an important role in the phase transitions, as is supported by the experimental
observations [7–9] as well as by the theoretical investigations [10, 11]. At the same time,
the results of x-ray diffraction studies, and Raman and NMR spectroscopy measurements
[14, 12, 13, 9] indicate the central importance of the XO4-group angular displacements and
the orientational dynamics of these groups in the processes of the proton transport in super-
ionic phases, in the low-temperature phase transitions that occur with the formation of the
dimer structures of the appropriate geometry and in the crystal deformation that occurs on
cooling.
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Figure 1. The projection of the rhombohedral primitive cell of TAHSe with the lattice vectors
a1, a2, a3 on the (001) plane in the hexagonal setting in phase II. The open, solid and hatched
big circles correspond to the possible positions of O(2) oxygens with different values of the
fractional heightz; A (z = 0, 0.2), B (z = 1

3 , 0.53) and C (z = − 1
3 ,−0.13) denote the positions

of the Se atoms of the lower and upper SeO4 groups. The small circles indicate the positions
of the protons within the hydrogen bond.

In this work, TAHSe is selected for consideration because its complex sequence
of phases with two super-ionic (I, II) and two ferroelastic (III, IV) phases of different
symmetries among them. The basic crystal structure of TAHSe in the super-ionic phase II
in the rhombohedral coordinate system with lattice vectors

a1 =
(
−
√

3

2
a0,

1

2
a0,

1

3
c

)
a2 =

(√
3

2
a0,

1

2
a0,

1

3
c

)
a3 =

(
0,−a0,

1

3
c

)
(wherea0 = 3.5 Å, c = 22.904Å) is shown in figure 1. There are two SeO4 groups and three
virtual hydrogen bonds,f = 1, 2, 3 (three possible proton positions), adjacent to the upper
SeO′′4 group in the unit cell with lattice vectorsRm = m1a1+m2a2+m3a3. Another three
hydrogen bonds connected with the SeO′4 group belong to the neighbouring unit cells with
the vectorsRm − af . In phase II, the SeO4 tetrahedra deviate by 4◦ from the symmetrical
positions required by the space groupR3̄m, whereas in phase I these complexes occupy
randomly the two orientationally symmetrical positions with equal probability, which gives
rise to the three mirror planes aboveTII−I [7]. The deflections of the vertex oxygens O(2)
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Figure 2. The structure of the hydrogen bond of Ci symmetry in phase II; Se atoms are denoted
by big circles, oxygen atoms by medium-sized circles and the equilibrium positions for protons
within the bond by small circles.
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Figure 3. The projection of the hydrogen-bond network structure of TAHSe on the (001) plane
in the hexagonal setting in phase III; the hydrogen bonds form sequences along thea1- and
a2-directions with the step heightc/3. Cases (a) and (b) are distinguished by the translation by
c along the hexagonal axis; the structural modulation corresponds to the doubling of the lattice
period along thea3-direction.

involved in the virtual-hydrogen-bonding formation couple with the proton on the hydrogen
bridge and this manifests itself in the H-bond geometry in phase II (figure 2).

The transition into the triclinic phase III is accompanied by a doubling of the prim-
itive unit cell along one of the translation vectorsaf that corresponds to the star{k4} =
{ 12b1, 1

2b2, 1
2b3} in Kovalev notation [15]. The structure of the hydrogen-bonded system

for the case ofk4 = 1
2b3 is shown in figures 3 and 4. In this case alternating sequences of

dimer chains along thea1- (figure 3(a)) anda2- (figure 3(b)) directions are formed. The
detailed structure of such dimers consisting of (SeO4)′ and (SeO4)′′ groups connected by
hydrogen bridges is shown in figure 4. We can see that SeO4 tetrahedra are reorientated
and fixed in one direction that correlates with the forming of the hydrogen bond with Ci

symmetry [16].
Unlike the case for phase III, the proton positions with the same indexf in the

monoclinic phase IV are occupied, which corresponds to the aligning of the dimer chains
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Figure 4. Hydrogen bonds of Ci symmetry along the (a)a1-direction and (b)a2-direction in
phase III for TAHSe. The case of thek3 = 1

2b3 orientation state.
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Figure 5. (a) The projection of the hydrogen-bond network structure of TAHSe on the (001)
plane in the hexagonal setting in phase IV; the hydrogen bonds{+,−,+, . . .} form sequences
along thea3-direction with the step heightc/3; x(+)− x(−) = 0.05. (b) The detailed structure
of the C2-symmetric hydrogen bond in phase IV.

in one direction (figure 5(a)). However, in this phase, (SeO4)′ and (SeO4)′′ tetrahedra are
reorientated in opposite directions (see figure 5(b)). This results in the alternative shifts of
the C2-symmetric H bonds by±δ (δ = 0.025b whereb is the lattice parameter in phase
IV) in the (x, y) plane. The crystalline structure that appears is characterized by the wave
vectork8 = 1

2(b1+ b2+ b3).
The rearrangement of the hydrogen-bond network and the role of the proton subsystem

in the transformations from phase I to phases III and IV was studied in [17] in the framework
of the lattice-gas model. In this case the Hamiltonian has the following form:

H = 1

2

∑
mm′
ff ′

8ff ′(mm
′)nmf nm′f ′ − µ

∑
mf

nmf (1)

wherenmf = {0, 1} is the proton occupation number for positionf in the primitive unit cell
atRm; 8ff ′(mm′) is the energy of the proton interactions;µ denotes the chemical potential
which determines the average proton concentration. Investigations of the thermodynamic
properties of the proton subsystem in the mean-field approximation (MFA) and by using
the cluster expansion method have been carried out in [17, 18]. The proposed proton
ordering model covers the main features of the transitions from the super-ionic phase to the
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ferroelastic phases III and IV of TAHSe and similar compounds, giving an explanation for
the principal changes of the proton arrangements. Nevertheless, it was noted that although
the consideration of the proton subsystem does provide the possibility of describing the
phase transitions I–III or I–IV occurring for example in Rb3H(SeO4)2 and (NH4)3H(SO4)2

crystals, it does not allow one to obtain the phase sequence II–III–IV observed in TAHSe.
It is essential to study the properties of the proton subsystem together with the surrounding
ionic groups in order to understand better the mechanism of the structural ordering in this
type of crystal. Therefore, in this work the influence of the SeO4-tetrahedra reorientations
on the proton ordering is considered. In the following analysis it is shown that these
interactions lead to crucial changes in the form of the phase diagram in comparison to the
case considered previously in [17].

Figure 6. A schematic diagram of the structure of the (SeO4)′–H–(SeO4)′′ dimer. The triangles
denote two possible orientation states of SeO4 tetrahedra; the circles identify the positions of
the protons within the hydrogen bond.

2. Microscopic description of the proton–ionic group coupling

On the basis of the data from the structural investigations of phases I and II, one is led
to assume that ionic groups can be located only at two orientationally symmetric positions
relatively to the mirror planes (see figure 6). In this case it is natural to introduce a
pseudospin variable for the description of the orientational dynamics of SeO4 groups. We
distinguish two states for each ionic group:

σ zmk =
{
−1/2 for clockwise rotational displacement

1/2 for anticlockwise rotational displacement

wherem denotes the index of the primitive unit cell in the crystal and the sublayer index
k = {1, 2} corresponds to the lower (SeO4)′ group and upper (SeO4)′′ group respectively.

The rotations of the neighbouring tetrahedra in one direction are accompanied by the
occupation of the positions 1, 3 or 2, 4 by protons with equal probabilities (phases II and III
with the Ci symmetry of the hydrogen bond), whereas the opposite rotations of tetrahedra
are connected with the occupation of positions 1, 4 or 2, 3 (phase IV with the C2-symmetric
hydrogen bond).

Thus, on this basis, the Hamiltonian (1) for the proton subsystem can be generalized by
introducing a set of the possible proton positionsν = {1, 4} between the tetrahedra. This
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leads to the dependence of the modulation of the proton interactions

8ff ′(mm
′)→ 8ff ′(mm

′; σ)

8ff ′(mm
′; σ) =

∑
ν,ν ′

8νν ′
ff ′(mm

′)
(

1

2
+ (−1)νσ zm1,k1

)(
1

2
+ (−1)ν

′
σ zm2,k2

)
(2)

on the mutual orientations of the neighbouring tetrahedra. Here the indices attached to the
pseudospin variables have the following meanings:

(m1, k1) =
{
(m, 2) ν = 1, 2

(m+ af , 1) ν = 3, 4

(m2, k2) =
{
(m′, 2) ν ′ = 1, 2

(m′ + af ′ , 1) ν ′ = 3, 4.

Since the deviations of the proton positions from the centre of the hydrogen bond are
small, it is sufficient to expand the interaction8νν ′

ff ′(mm
′) into a multipole series in terms

of the proton position vectorsδνf , δν
′
f ′ (see figure 6). In this case we have

8ff ′(mm
′; σ) = 8(0)

ff ′(mm
′)+ A(f )ff ′ (mm

′)(σ zm2− σ zm+af ,1)+ A
(f ′)
ff ′ (mm

′)(σ zm′+af ′ ,1− σ zm′2)
+ B(f )ff ′ (mm

′)(σ zm2+ σ zm+af ,1)+ B
(f ′)
ff ′ (mm

′)(σ zm′+af ′ ,1+ σ zm′2)
+ Cff ′(mm′)(σ zm+af ,1− σ zm2)(σ

z
m′+af ′ ,1− σ zm′2) (3)

where

8
(0)
ff ′(mm

′) = 1

16

∑
νν ′
8νν ′
ff ′(mm

′)

A
(f )

ff ′ (mm
′) = 1

2

∑
α={1,3}

∇α8(Rmf −Rm′f ′)(δ
2α
f − δ1α

f )

B
(f )

ff ′ (mm
′) = 1

4

∑
αβ

∇α∇β8(Rmf −Rm′f ′)(δ
2α
f δ

2β
f − δ1α

f δ
1β
f )

C
(f )

ff ′ (mm
′) = −

∑
αβ

∇α∇β8(Rmf −Rm′f ′)(δ
1α
f − δ2α

f )(δ
1′β
f ′ − δ2′β

f ′ )

(4)

with δ1
f = −δ3

f , δ2
f = −δ4

f .
The coefficientsA, B andC in (4) correspond to the dipole–charge, quadrupole–charge

and dipole–dipole interactions respectively. The dipole components are present only for
the antiphase reorientations of the neighbouring ionic groups, i.e. the case of phase IV,
whenσ zm2 = −σ zm+af ,1. The resulting dipole moments correspond to the above-mentioned
alternating displacements of the hydrogen bonds in phase IV (δ = |δ2−δ1|). The quadrupole
terms survive for in-phase reorientations (σ zm2 = σ zm+af ,1; phases II and III). In particular,
for the orientationally ordered state in phase II

8ff ′(mm
′; σ) = 8̃ff ′(mm′)

8̃ff ′(mm
′) = 8(0)

ff ′(mm
′)+ B(f )ff ′ (mm

′)+ B(f ′)ff ′ (mm
′).

(5)

We can describe the orderings with the average pseudospinsσ̄ zmk playing the role of the
order parameters by including in the Hamiltonian, besides (3), terms which distinguish the
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differences in energy (w or w′) of the hydrogen bonds of C2 and Ci symmetry:

H ′ = w
∑
mf

{(
1

2
− σ zm1

)(
1

2
+ σ zm−af ,2

)
+
(

1

2
+ σ zm1

)(
1

2
− σ zm−af ,2

)}
nm−af ,f

+ w′
∑
mf

{(
1

2
+ σ zm1

)(
1

2
+ σ zm−af ,2

)
+
(

1

2
− σ zm1

)(
1

2
− σ zm−af ,2

)}
nm−af ,f

= 1

2
(w + w′)

∑
mf

nmf + 2(w − w′)
∑
mf

σ zm+af ,1σ
z
m2nmf . (6)

The short-range interaction between the neighbouring lower and upper sublayers of SeO4

tetrahedra which belong to the same unit cell and the long-range interaction between these
ionic groups in crystal are given by

H ′′ = −K
∑
m

σ zm1σ
z
m2−

1

2

∑
mm′
kk′

Jkk′(mm
′)σ zmkσ

z
m′k′ . (7)

The resulting Hamiltonian of the Ising type for pseudospins describes the transition from
phase I (̄nmf = 1/3, σ̄ zmk = 0) to phase II (̄nmf = 1/3, σ̄ zmk 6= 0). Despite the fact that the
proton subsystem in the super-ionic phase II is disordered, the orientations of the tetrahedra
are already frozen in, whereas the vertex oxygens O(2) remain averaged between three
possible positions. At the transitions into the orientation state with vectork3 = 1

2b3 of
phase III or into phase IV, the pseudospin averages can be represented as

σ̄ zmk = σ0+ pk(m) exp(ik3 ·Rm)+ qk(m) exp(ik8 ·Rm). (8)

In these phases̄nmf 6= 1/3 andσ̄ zmk 6= 0.
In general, the amplitudespk(m) and qk(m) depend both on the sublattice index in

the primitive unit cell and the cell number that relates to the doubling of the translation
period with the vectors of the{k4} star in phase III as well as to the structure modulation
characterized by vectork8 in phase IV.

Hereafter we shall confine our attention to the consideration of the proton part of the
Hamiltonian, taking into account the effect of the pseudospin subsystem in the mean-field-
type approximation. In this case, we set the values ofσ̄ zmk such that they correspond to
phase II. The Hamiltonian is thereby returned to the initial type of (1), with the bilinear
interaction term8̃ff ′(mm′), which possesses the lower symmetryR3̄ of phase II rather than
that of phase I considered in [17].

3. Proton orderings with theR3̄ prototype phase symmetry

The effective lattice-gas Hamiltonian of the type (1), in the MFA, takes the following form:

HMF = U0+
∑
mf

(γf (m)− µ)nmf (9)

where

γf (m) =
∑
m′f ′

8̃ff ′(mm
′)n̄m′f ′ (10)
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are the internal fields, and

U0 = −1

2

∑
mm′
ff ′

8̃ff ′(mm
′)n̄mf n̄m′f ′ . (11)

The thermodynamic potential of the proton subsystem in this case is given by

� = U0−2
∑
mf

ln(1+ exp [−β(γf (m)− µ)]). (12)

The average proton occupanciesn̄mf can be determined from

n̄mf = n̄

3
+ δn̄mf

where the deviationsδn̄mf become nonzero in the phases with proton ordering. For the
description of the transition into the ordered phases III and IV, let us expandδn̄mf in terms
of both the star{k4} vectors and the vectork7 = 0 (here the influence of the surroundings,
which results in the H-bond shifts in phase IV, is neglected for simplicity). In particular,
for the case of the orientation state characterized by the vectork3 = 1

2b3,

δn̄mf = ũf exp(ik3 ·Rm)+ ṽf (13)

where the deviation amplitudesũf andṽf can be found from the conditions for the minimum
of the free energyF = �+ µn̄N for the given average proton concentrationn̄ (n̄ = 1 for
M3H(XO4)2-type crystals):

∂F

∂n̄m′f ′
= 0 (14)

or from the system of equations which follows immediately from (14):

n̄mf =
{
1+ exp [β(γf (m)− µ)]

}−1
. (15)

In the case ofR3̄ symmetry, the Fourier transform of the interaction matrix8̃ff ′(k) has the
following form for k = k3:

8̃11(k3) = ϕ1+ ξ 8̃22(k3) = ϕ1− ξ 8̃33(k3) = ϕ3

8̃12(k3) = 8̃21(k3) = ϕ2 8̃13(k3) = 8̃31(k3) = ϕ4+ η (16)

8̃23(k3) = 8̃32(k3) = ϕ4− η
whereξ andη are the deviations connected with the disappearance of the mirror planes in
phase II. For the case of theR3̄m symmetry of the prototype phase I,ξ = η = 0.

We can build up the linear combinations ofũf and ṽf which play the role of the order
parameters. For this purpose, we expandũf and ṽf in terms of the eigenvectors of the
Fourier transform matrices̃8ff ′(k3) and 8̃ff ′(k = 0) respectively, and furthermore retain
the terms related to the maximum eigenvalues of these matrices (in this way the components
corresponding to the maximum temperature of the transition into the ordered state are taken
into consideration). The resulting form forδn̄mf is given by

δn̄m1 = 1√
2
(1+ δ2)u exp(ik3 ·Rm)+ 1√

6
v

δn̄m2 = − 1√
2
(1− δ2)u exp(ik3 ·Rm)+ 1√

6
v (17)

δn̄m3 = δ3u exp(ik3 ·Rm)− 2√
6
v.
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Here

δ2 = ϕ4η − (ϕ2+ ϕ3− ϕ1)ξ/2

ϕ2(ϕ2+ ϕ3− ϕ1)− ϕ2
4

δ3 = 1√
2

ϕ4ξ − 2ϕ2η

ϕ2(ϕ2+ ϕ3− ϕ1)− ϕ2
4

.

Settingξ = η = 0, the representationsδn̄mf [17] for the case of the prototype phase with
the higher symmetryR3̄m can be deduced. With this constraint,n̄+1 = n̄−2 and n̄−1 = n̄+2
(the labels{+,−} correspond to even and odd indicesm3 in themth unit cell respectively).
We emphasize that, unlike in the latter case, the average proton occupanciesn̄+1 and n̄−2 as
well as n̄−1 and n̄+2 are now different.

Substitution of (17) into (10) and (11) yields

γ1(m) = γ0+ av + (b +1b) exp(ik3 ·Rm)u

γ2(m) = γ0+ av − (b −1b) exp(ik3 ·Rm)u

γ3(m) = γ0− 2av + b3 exp(ik3 ·Rm)u

U0 = −N
2
γ0− N

2

√
6av2− N

2

√
2(b + b1)u

2

where

a = 1√
6

[8̃11(0)− 8̃12(0)] b = 1√
2

[ϕ1− ϕ2+ δ2ξ +
√

2δ3η]

1b = 1√
2

[ξ + δ2(ϕ1+ ϕ2)+
√

2δ3ϕ4] b3 = 1√
2

[2η + 2δ2ϕ4+
√

2δ3ϕ3]

b1 = δ21b + 1√
2
δ3b3 γ0 = 1

3
n̄
∑
f ′
8̃ff ′(0).

The order parametersu andv should be determined from the conditions for the minimum
of the free energy:

∂

∂u

(
1

N
F

)
= 0

∂

∂v

(
1

N
F

)
= 0 (18)

together with the solution of the equation for the chemical potentialµ:

∂

∂µ

(
1

N
F

)
= 0. (19)

The transition into the ordered state corresponding to phase III occurs foru 6= 0
and v 6= 0 (with n̄+1 → 1, n̄+2 → 0, n̄+3 → 0 or n̄−1 → 0, n̄−2 → 1, n̄−3 → 0 when
|u| → b/[

√
2(b + b1)] and v → 1/

√
6). The solutionsu = 0 andv 6= 0 are related to the

case of phase IV (̄n+3 = n̄−3 → 1; n̄+1 , n̄−1 , n̄+2 , n̄−2 → 0 for v→−2/
√

6).
Numerically solving the system of equations (18), (19) and selecting the solutions which

determine the absolute minimum gives different sequences of phase transitions according
to the value of the ratiõb = b/a. The temperature dependences of the order parameters
for different values ofb̃ are plotted in figure 7. In particular, for̃b < b̃∗, whereb̃∗ ' 1.6
is the triple point, the first-order transformation II–IV occurs. It should be noted that, for a
sufficiently narrow interval with̃b > b̃∗, the region of existence of the two-phase-transition
sequence II–III–IV appears; in this case the III–IV transformation is of first order. With
further increase of̃b, the temperature interval for which the phase IV exists narrows until
only the transition II–III remains, which is first order forb̃ < b̃c and second order for̃b > b̃c
whereb̃c is the tricritical point. The resulting (τ , b̃) phase diagram (whereτ = kT /|a|) is
represented in figure 8. We can see that, in contrast to the case withξ = η = 0 studied
in [17], for which the III–IV coexistence line was parallel to the temperature axis, in the
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Figure 7. The dependence of the order parameters onτ for 1b/|a| = 0.6, b3/|a| = −0.6,
b1/|a| = −0.15 and (a)b̃ = 1.55, (b) b̃ = 1.65, (c) b̃ = 1.75, (d) b̃ = 1.95.
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Figure 8. The (τ , b̃) phase diagram for1b/|a| = 0.6, b3/|a| = −0.6, b1/|a| = −0.15; the full
and broken curves indicate the first- and second-order phase transitions respectively. The dotted
line corresponds to the valuẽb = 1.688 obtained for TAHSe.

diagram obtained, this coexistence curve is bent towards the right. This effect leads to the
appearance of the III–IV phase transformation in TAHSe on cooling that was observed in
experiments.
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Using the Ewald technique for the lattice series summation to obtain the Coulomb
contribution to the proton interaction potential, we can evaluate, from the available structural
data, the values of the parametersa and b. Taking the inter-proton distance to be the
separation between the centres of the hydrogen bonds in phase II for TAHSe, we obtain
a = −0.09 eV,b = −0.15 eV andb/a = b̃0 = 1.688, which is very close to the triple point
b̃ = b̃∗ and falls in the rangẽb∗ < b̃ < b̃c. In other words, the phase sequence II–III–IV
is obtained for TAHSe on cooling with both transitions first order. This agrees with the
experimentally observed situation for this crystal.

Moreover, it is clear that the valuesb and a connected with the Fourier transform
components of the proton interaction matrix change with the hydrostatic pressureP that is
applied. This occurs due to the changes of the lattice parameters under deformation. The
dependencẽb = b̃(P ) has been calculated by the Ewald method, and the results obtained
and the (T , P ) phase diagrams were discussed comprehensively in [19]. We merely note
that the temperature at which the super-ionic transition occurs decreases with pressure, and
the steep slope of the III–IV transition temperature induced by the pressure increase agrees
with the diagram obtained by Gesi [20].

4. Conclusions

We have performed studies of the influence of SeO4-tetrahedra reorientations on the proton
subsystem with the aim of elucidating the mechanism of the structural ordering occurring
in M3H(XO4)2-type super-ionic crystals. In particular, it follows from our results that the
orientational ordering of SeO4 ions which takes place at a considerably higher temperatures
than is required for the proton orderings is deeply involved in the I→ II → III → IV
phase transitions and appears to be the principal mechanism determining the observed phase
sequence in TAHSe.

However, we did not carry out self-consistent investigations of the properties of the
pseudospin subsystem together with the proton orderings. In fact, the average pseudospin
valuesσ̄ zmk for phase IV were set to the values for phase II; hence we did not obtain the
ordering of tetrahedra occurring in this phase. Further work is needed on this, as well as
on the effect of the deformations in the crystal appearing on cooling, which can change the
energies of the C2- and Ci-symmetric hydrogen bonds.

Nevertheless, the resulting phase diagrams obtained with the values of the parameters
calculated for TAHSe agree with the experimental data for the phase orderings. With the
constraintξ = η = 0, I–III and I–IV transitions occur, which correspond to the cases
of Rb3H(SeO4)2 and (NH4)3H(SO4)2 crystals with only one super-ionic phase ofR3̄m
symmetry. The pressure dependence of the transition temperature obtained for these crystals
as well as that for TAHSe are consistent with the experimental measurements [20, 21],
which confirms our main assumptions concerning the nature of the microscopic processes
occurring in M3H(XO4)2.
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